Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Biomol Struct Dyn ; : 1-12, 2022 Dec 26.
Article in English | MEDLINE | ID: covidwho-2187088

ABSTRACT

The outbreak of severe acute respiratory coronavirus 2 (SARS-CoV-2) has created a public health emergency globally. SARS-CoV-2 enters the human cell through the binding of the spike protein to human angiotensin converting enzyme 2 (ACE2) receptor. Significant changes have been reported in the mutational landscape of SARS-CoV-2 in the receptor binding domain (RBD) of S protein, subsequent to evolution of the pandemic. The present study examines the correlation between the binding affinity of mutated S-proteins and the rate of viral infectivity. For this, the binding affinity of SARS-CoV and variants of SARS-CoV-2 towards ACE2 was computationally determined. Subsequently, the RBD mutations were classified on the basis of the number of strains identified with respect to each mutation and the resulting variation in the binding affinity was computationally examined. The molecular docking studies indicated a significant correlation between the Z-Rank score of mutated S proteins and the rate of infectivity, suitable for predicting SARS-CoV-2 infectivity. Accordingly, a 30-mer peptide was designed and the inhibitory properties were computationally analyzed. Single amino acid-wise mutation was performed subsequently to identify the peptide with the highest binding affinity. Molecular dynamics and free energy calculations were then performed to examine the stability of the peptide-protein complexes. Additionally, selected peptides were synthesized and screened using a colorimetric assay. Together, this study developed a model to predict the rate of infectivity of SARS-CoV-2 variants and propose a potential peptide that can be used as an inhibitor for the viral entry to human.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 40(2): 903-917, 2022 02.
Article in English | MEDLINE | ID: covidwho-759734

ABSTRACT

COVID-19, which has emerged recently as a pandemic viral infection caused by SARS-coronavirus 2 has spread rapidly around the world, creating a public health emergency. The current situation demands an effective therapeutic strategy to control the disease using drugs that are approved, or by inventing new ones. The present study examines the possible repurposing of existing anti-viral protease inhibitor drugs. For this, the structural features of the viral spike protein, the substrate for host cell protease and main protease of the available SARS CoV-2 isolates were established by comparing with related viruses for which antiviral drugs are effective. The results showed 97% sequence similarity among SARS and SARS-CoV-2 main protease and has same cleavage site positions and ACE2 receptor binding region as in the SARS-CoV spike protein. Though both are N-glycosylated, unlike SARS-CoV, human SARS-CoV-2 S-protein was O-glycosylated as well. Molecular docking studies were done to explore the role of FDA approved protease inhibitors to control SARS-CoV-2 replication. The results indicated that, Ritonavir has the highest potency to block SARS-CoV-2 main protease and human TMPRSS2, a host cell factor that aids viral infection. Other drugs such as Indinavir and Atazanavir also showed favourable binding with Cathepsin B/L that helped viral fusion with the host cell membrane. Further molecular dynamics simulation and MM-PBSA binding free energy calculations confirmed the stability of protein-drug complexes. These results suggest that protease inhibitors particularly Ritonavir, either alone or in combination with other drugs such as Atazanavir, have the potential to treat COVID 19.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Protease Inhibitors , Humans , Molecular Docking Simulation , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL